11 research outputs found

    Text/Speech-Driven Full-Body Animation

    Full text link
    Due to the increasing demand in films and games, synthesizing 3D avatar animation has attracted much attention recently. In this work, we present a production-ready text/speech-driven full-body animation synthesis system. Given the text and corresponding speech, our system synthesizes face and body animations simultaneously, which are then skinned and rendered to obtain a video stream output. We adopt a learning-based approach for synthesizing facial animation and a graph-based approach to animate the body, which generates high-quality avatar animation efficiently and robustly. Our results demonstrate the generated avatar animations are realistic, diverse and highly text/speech-correlated.Comment: IJCAI-2022 demo track, video see https://youtu.be/MipiwU3Em_

    Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis

    No full text
    Single-atom electrocatalysts have attracted board interest in the recent years as they combine the advantages of heterogeneous and homogeneous electrocatalysts. Nevertheless, single-atom electrocatalysts with single metal component cannot further satisfy the demand of catalytic properties. This work developed atomic Co/Ni dual sites in N-doped porous carbon Janus-like frameworks through epitaxial growth of cobalt based MOFs on nickel complexes. Structural characterization and atomic-scale transmission electron microscopy revealed the homogeneously dispersed active sites of Co-Ni alloy and single Co/Ni atoms. Electrochemical data strongly demonstrated the advantages of integrating Co-MOF and Ni complex with different topological structures to form a Janus-like structure. The resultant catalysts afforded onset potential of 0.93 V and half-wave potential of 0.84 V for oxygen reduction reaction in alkaline media, and 0.86 V and 0.73 V in acid media, which is better than single noble-metal-free catalysts, even close to commercial Pt/C. Besides, the catalysts also exhibited good oxygen evolution reaction performance (a current density of 10 mA cm(-2) at a potential of 1.59 V) and overvoltage between ORR and OER is 0.78 V. Density functional theory calculations indicated the high electrocatalytic activities are originated from the synergetic effect of atomic Co/Ni-N-C bonds and microstructure of the prepared materials. This work paves a new avenue for the development of multiatomic electrocatalysts for energy conversion.</p

    Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria

    No full text
    <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Escherichia coli</i> (<i>E. coli)</i> are the most common infectious bacteria in our daily life, and seriously affect human’s health. Because of the frequent and extensive use of antibiotics, the microbial strains forming drug resistance have become more and more difficult to deal with. Herein, we utilized bovine serum albumin (BSA) as the template to synthesize uniform copper sulfide (CuS) nanoparticles via a biomineralization method. The as-prepared BSA-CuS nanocomposites showed good biocompatibility and strong near-infrared absorbance performance and can be used as an efficient photothermal conversion agent for pathogenic bacteria ablation with a 980 nm laser at a low power density of 1.59 W/cm<sup>2</sup>. The cytotoxicity of BSA-CuS nanocomposite was investigated using skin fibroblast cells and displayed good biocompatibility. Furthermore, the antibacterial tests indicated that BSA-CuS nanocomposite showed no antibacterial activity without NIR irradiation. In contrast, they demonstrated satisfying killing bacterial ability in the presence of NIR irradiation. Interestingly, <i>S. aureus</i> and <i>E. coli</i> showed various antibacterial mechanisms, possibly because of the different architectures of bacterial walls. Considering the low cost, easy preparation, excellent biocompatibility and strong photothermal convention efficiency (24.68%), the BSA-CuS nanocomposites combined with NIR irradiation will shed bright light on the treatment of antibiotic-resistant pathogenic bacteria
    corecore